If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-16x-1=0
a = 20; b = -16; c = -1;
Δ = b2-4ac
Δ = -162-4·20·(-1)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{21}}{2*20}=\frac{16-4\sqrt{21}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{21}}{2*20}=\frac{16+4\sqrt{21}}{40} $
| 10^x+6=100^x | | 10^x+6=100x | | 104=1/2(3x+2)x | | 3x+12/7=13 | | -2x-5=7-5x | | -0.65(x+8)=3.9 | | 7.4x=-0.6882 | | 1.5x-1.5=-6 | | 3(x+17)=18 | | 69x-x^2=69 | | 1.3x+39=-1.3 | | -0.84(x+4)=-4.2 | | -3.8x=-35.72 | | 5x+10-6x=20 | | 36+1.8x=-5.4 | | 3x+10.5=x | | 4.9-g=-0.4 | | X-3z=-16 | | 5+2*10=b | | 18b-11=9b+2=180 | | 4nn=7 | | (5y+9)(1-y)=0 | | -20h+18h=10 | | -11c+7c+16c+-20c+3c=10 | | -16q+-8q+4q+-19=1 | | 2x+8=38−3x | | -4t-2=-5t-10 | | -8m-7m=5 | | 4z/9+3=2 | | 80=100x-20x^2 | | (2x)+5=50 | | -8m—-7m=5 |